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The main theorem in this paper states that if a certan bound is imposed on 
the associated pressure pertaining to a weak solution of the Navier-Stokes 
equation then the solution is actually smooth. The proof uses the fact that 
such a bound implies a bound on the first derivatives of the solution which, in 
turn, leads to smoothness. 

1. There is a considerable interest in the investigation of sufficient conditions 

that will insure smoothness of  the solutions. Serrin [1] was the first one to es- 
tablish such a condition. The author, together with M. Shinbrot [2] could 

strengthen his results. Both conditions involve the flow itself. The purpose of  

this paper  is to furnish a condition that  involves the associated pressure. 

The work is based on [3]. We use some lemmas and the existence theorems 
proved there; we also use a similar technique; thus we use the same notations. 

We shall study the Navier-Stokes equations in the form , 

(2.1) 

(2.2) 

u t -  V2u + u • V u  = - V p  

V ' u = 0  

with the density and the kinematic viscosity normalized to one. We suppose 
further that the flow takes place in a bounded, smooth domain D c R 3. In the 

above equation, u denotes the velocity of  the flow, and p the pressure. In addition 

to (2.1) and (2.2), the velocity must satisfy the boundary condition 

(2.3) u = 0  for xeOD 

and an initial condition 

(2.4) u = u o for t = 0. 

Given any vector u, we denote its Euclidean length by I u]. I f  u = u(x, t) we write 

(2.5) I1" I!, =f  In I'dx 1,, 
D 

i f  the right-hand side is well defined. 
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A weak solution of  the Napier-Stokes equations is a vector u(x, t) that satisfies 

null~<=M, O < - t < - T  

T 

ffl ul2.xd,  2 
0 

It also satisfies (2.1)-(2.4) in a weak sense, i.e. for any smooth ¢(x,t) that 
satisfied (2.2), (2.3) the following holds 

T 

0 

= f u(x,T)¢(x,T)dx- f u(x,O)¢(x,O)dx. 

THEOREM. Let u be a weak solution of the Napier-Stokes equations (2.1)-(2.4), 
with smooth initial conditions. 

I f  p, the associated pressure, satisfies 

(2.6) 11 pll~_-__ Co O<-t<-T1 

for  some q > 12/5 then u is smooth. 

Proof. We shall prove that u is a strong solution of  (2.1)-(2.4). This means 
that all the terms in (2.1) are well defined in L2. From this point, the passage to 
a smooth solution is done by the aid of Theorem 7.1 of  [2]. 

It is known by Theorem 5.1 of [3] (also by Prodi's work [4]) that for any 
initial conditions u ° so that t[ V u°lt 2 is bounded there exists an interval 0 _<t _< T 
for which the solution u is strong. Moreover T is dependent on 1[ V u  ° [[ alone. 
We shall prove that if (2.6) holds, then: 

(2,7) II v u 115 --- k(Co, II v u ° II) 

for all t for which u(x, t) is strong. 
Thus, given a subinterval [0, T2] for which u is strong we can extend it using 

(2.7) to an interval [0, T2 + T(k(Co, II Vu o I1=))], covering the interval [0, T1] in a 
finite number of steps. In order to get (2.7) we proceed as follows. 

Let the subinterval [0, T2] be given. Multiply (2.1) by the vector u 3 = (u,u2,ua)3 a 3 
and integrate over D. 

(2.8) f u,.u3dx- f V~u.uadx+ f (u.Vu).u3dx-_- f Vp.:dx. 
The first term is rewritten as: 
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(2.9) 

Integrate by parts to get: 

(2.1o) 

g. KANIEL 

1 d [ ] u 2  
f u,  u 3dx = ~ I1~. 
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f (u • ~Tu)u3dx 0 

12 
Denote the index q in (2.6) as q = 5 - 58." 

Then: 

~- 311 v.2112 f I. 12p 'ax''2 -~ 311v"2112 II u2 ll6,,+,+ I1 v 2 II0,,-+, 

+ -32 II v u2 112 II u~ lit' II u~ II~ II P fl;. 
Since u -- 0 on aD it follows, by Sobolev's lemma, that 

II "" I1+ -- c II v . 2  II 2. 
Since u is a weak solution of (2.1)-(2.4) it satisfies [5]. 

(2.12) II u2 II, = II u II~ -~ c.  
Substituting (2.9)-(2.12) in (2.8) we get: 

d 
d-t [] u 1122 + 3 ]1 ~7 u 2 112 ~ C" Co 2 ][ X7 u 2 ][ 22-~. 

Since u is smooth in [0, 7"2] it follows that (a/dO II u2 1122 exists and is continuous. 
Consider now the closed set E defined by 

d 
d-Tll u'- 1122-~ 0 t ~ E, 

For t e E the following holds: 

Consequently, by Poincar~'s inequality: 

(2.13) II "2112 ~ c .  = k(Co). 

The complementary set consists of  possibly a haft open interval [0, to] and a 
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a sequence of open intervals (t,,[~). Since Ilu2112 is decreasing in any of these sub- 
intervals, and since the points t~ belong to E we get: 

I[:  112 =< II (u°)2112 =< c I1 v ,°Il l  o < t < to. 

[I u2(t)112 =<; I] u2<t')2 II--< k(Co) t < t  < [,. 

Thus II u~ 112 = II u il, ~ is uniformly bounded in [0, T2]. 
Now consider the space L2, space of all vectors having components in L2 and 

consider the projection P onto the solenoidal vectors. As in the proof of Theorem 
(4.1) in [3], multiply equation (2.1) b y - P  V 2 u. Inequality (4.8) of the latter reads 

(2.14) ~llvuil~ + Itev2.11~ =< llu" vull~. 

Now we proceed as follows: 

II u .  v u I1~ --< II u II, ~ II v u 112 --- II, II, ~ 11 v u 112' ,~ II Vu ii63 ,~ 

Lemmas 3.3 and 3.5 of I3] read: 

Ilvull,<=cllPV'ull~ 

IlVull2 z 11 u I1~ ,2 llve~ul5 ,~ 
Substituting the last two inequalities we get 

II u .  v u I1~ ~- c II P V2u II~" II u ll~llu It~" --< c II PV~ull~" 
Thus 

(2.15) dtll Vu  I1~ + II pV2.11~ ~ C II PV2u I1~ :'. 

Let us repeat the argument that was used in the first step. Let F be the closed set 
for which 

d 
Ilvull~ < 0  t~F. dt  = 

For t e F P V2u is uniformly bounded, therefore by Lemma 3.4 of [3] it follows 
that 

(2.1~ IIv.lt2_-< c t~F. 

The complementary set consists of possibly the half open interval [0, to] for which 

(2.17) II v , ( 0  I1= _-__ 11 v u °  112 0__<t<f0, 
and intervals (t~, tO for which 
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(218) Ilvu(,)ll2<-llvu(,,)ll2<-c , ;< ,<f ,  

since t i e F. 
Estimates (2.16)-(2.18) are summarized in (2.7). Thus it is possible to extend 

the domain smoothness across T2 and the proof is complete. 

REFERENCES 

1. J.A. Serrin, On the interior regularity of  weak solutions o f  the Navier-Stokes equations, 
Archs. Nation. Mech. Analysis, 9 (1962), 187-195. 

2. S. Kaniel and M. Shinbrot, Smoothness of  weak solutions of  the Navier-Stokes equations, 
Archs. Nation. Mech. Analysis, 24 (1967), 302-324. 

3. M. Shinbrot and S. Kaniel, The initial value problem for the Navier-Stokes equations, 
Archs. Nation. Mech. Analyses, 21 (1966), 270-285. 

4. (3. Prodi, Theoremi di tipo locale per il sistema di Navier-Stokes e stabilita delle soluzioni 
stazionairie, Re. Semin. Mat. Univ. Padova, 32 (1962), 374--397. 

5. Hopf, Eberhardt, Ober die Anfangwertaufgaben flit die hydroamischen Grund- 
gleiehungen, Math. Nach., 4 (1951), 213-321. 

THE HEBREW UNIVERSITY OF JERUSALEM 


