A SUFFICIENT CONDITION FOR SMOOTHNESS OF SOLUTIONS OF NAVIER-STOKES EQUATIONS

RV

S. KANIEL

ABSTRACT

The main theorem in this paper states that if a certan bound is imposed on the associated pressure pertaining to a weak solution of the Navier-Stokes equation then the solution is actually smooth. The proof uses the fact that such a bound implies a bound on the first derivatives of the solution which, in turn, leads to smoothness.

1. There is a considerable interest in the investigation of sufficient conditions that will insure smoothness of the solutions. Serrin [1] was the first one to establish such a condition. The author, together with M. Shinbrot [2] could strengthen his results. Both conditions involve the flow itself. The purpose of this paper is to furnish a condition that involves the associated pressure.

The work is based on [3]. We use some lemmas and the existence theorems proved there; we also use a similar technique; thus we use the same notations.

2. We shall study the Navier-Stokes equations in the form

$$
(2.1) \t u_t - \nabla^2 u + u \cdot \nabla u = - \nabla p
$$

$$
\nabla \cdot u = 0
$$

with the density and the kinematic viscosity normalized to one. We suppose further that the flow takes place in a bounded, smooth domain $D \subset \mathbb{R}^3$. In the above equation, u denotes the velocity of the flow, and p the pressure. In addition to (2.1) and (2.2), the velocity must satisfy the boundary condition

$$
(2.3) \t\t u = 0 \tfor \t x \in \partial D
$$

and an initial condition

(2.4)
$$
u = u^0
$$
 for $t = 0$.

Given any vector u, we denote its Euclidean length by |u|. If $u = u(x, t)$ we write

(2.5)
$$
\|u\|_{q} = \int_{D} |u|^{q} dx^{1/q}
$$

if the right-hand side is well defined.

Received March 28, 1968, and revised form, August 7, 1968.

A weak solution of the Navier-Stokes equations is a vector $u(x, t)$ that satisfies

$$
\|u\|_2 \le M_1 \qquad 0 \le t \le T
$$

$$
\int_{0}^{T} \int |\nabla u|^2 dx dt \le M_2.
$$

It also satisfies (2.1)-(2.4) in a weak sense, i.e. for any smooth $\phi(x, t)$ that satisfied (2.2), (2.3) the following holds

$$
\int_{0}^{T} \int \left[-u \frac{\partial \phi}{\partial t} - u \nabla^{2} \phi + (u \cdot \nabla \phi) \cdot u \right] dx dt
$$

=
$$
\int u(x, T) \phi(x, T) dx - \int u(x, 0) \phi(x, 0) dx.
$$

THEOREM. *Let u be a weak solution of the Napier-Stokes equations* (2.1)-(2.4), *with smooth initial conditions.*

If p, the associated pressure, satisfies

$$
(2.6) \t\t\t $\|p\|_q \leq C_0 \t 0 \leq t \leq T_1$
$$

for some $q > 12/5$ *then u is smooth.*

Proof. We shall prove that u is a strong solution of (2.1) – (2.4) . This means that all the terms in (2.1) are well defined in L_2 . From this point, the passage to a smooth solution is done by the aid of Theorem 7.1 of [2].

It is known by Theorem 5.1 of [3] (also by Prodi's work [4]) that for any initial conditions u^0 so that $\|\nabla u^0\|_2$ is bounded there exists an interval $0 \le t \le T$ for which the solution u is strong. Moreover T is dependent on $\|\nabla u^0\|$ alone. We shall prove that if (2.6) holds, then:

$$
(2.7) \t\t\t\t \|\nabla u\|_2 \le k(C_0, \|\nabla u^0\|)
$$

for all t for which $u(x, t)$ is strong.

Thus, given a subinterval $[0, T_2]$ for which u is strong we can extend it using (2.7) to an interval $[0, T_2 + T(k(C_0, \|\nabla u^0\|_2))]$; covering the interval $[0, T_1]$ in a finite number of steps. In order to get (2.7) we proceed as follows.

Let the subinterval $[0, T_2]$ be given. Multiply (2.1) by the vector $u^3 = (u_1^3, u_2^3, u_3^3)$ and integrate over D.

(2.8)
$$
\int u_t \cdot u^3 dx - \int \nabla^2 u \cdot u^3 dx + \int (u \cdot \nabla u) \cdot u^3 dx = - \int \nabla p \cdot u^3 dx.
$$

The first term is rewritten as:

g. KANIEL

(2.9)
$$
\int u_t \cdot u^3 dx = \frac{1}{4} \frac{d}{dt} ||u^2||_2^2.
$$

Integrate by parts to get:

$$
(2.10) \t\t \t\t \int (u \cdot \nabla u) u^3 dx = 0
$$

$$
(2.11) \qquad \qquad -\int \nabla^2 u \cdot u^3 dx = \int \nabla u \cdot \nabla u^3 dx = \frac{3}{4} \|\nabla u^2\|_2^2.
$$

Denote the index q in (2.6) as $q = \frac{12}{5-58}$.

Then:

$$
\begin{aligned} \left| \int \nabla p \cdot u^3 dx \right| &= \left| \int p \cdot (\nabla \cdot u^3) dx \right| \leq \frac{3}{2} \left| \int (\nabla \cdot u^2) \cdot \left| u \right| \cdot \left| p \right| dx \\ &\leq \frac{3}{2} \|\nabla u^2 \|_2 \int |u|^2 p^2 dx^{1/2} \leq \frac{3}{2} \|\nabla u^2 \|_2 \|u^2 \|_{6/1+5\epsilon} \|p^2 \|_{6/5-5\epsilon} \\ &\leq \frac{3}{2} \|\nabla u^2 \|_2 \|u^2 \|_6^{-\epsilon} \|u^2 \|_1^{\epsilon} \|p \|_q^2. \end{aligned}
$$

Since $u = 0$ on ∂D it follows, by Sobolev's lemma, that

$$
\|u^2\|_6\leq C\|\nabla u^2\|_2.
$$

Since u is a weak solution of (2.1) - (2.4) it satisfies [5].

(2.12)
$$
\|u^2\|_1 = \|u\|_2^2 \leq C.
$$

Substituting (2.9) - (2.12) in (2.8) we get:

$$
\frac{d}{dt} ||u||_2^2 + 3 ||\nabla u^2||_2^2 \leq C \cdot C_0^2 ||\nabla u^2||_2^{2-\epsilon}.
$$

Since u is smooth in $[0, T_2]$ it follows that $(d/dt) ||u^2||_2^2$ exists and is continuous. Consider now the closed set E defined by

$$
\frac{d}{dt}\|u^2\|_2^2\leqq 0 \qquad t\in E.
$$

For $t \in E$ the following holds:

$$
\|\nabla u^2\|_2 \leqq \left\{\frac{C\cdot C_0}{3}\right\}^{1/s}.
$$

Consequently, by Poincaré's inequality:

(2.13)
$$
\|u^2\|_2 \leq C \cdot \left(\frac{C \cdot C_0^2}{3}\right)^{1/\epsilon} = k(C_0).
$$

The complementary set consists of possibly a half open interval $[0, t_0]$ and a

a sequence of open intervals (t_i, \tilde{t}_i) . Since $||u^2||_2$ is decreasing in any of these subintervals, and since the points t_i belong to E we get:

$$
||u^2||_2 \le ||(u^0)^2||_2 \le C ||\nabla u^0||_2^2 \qquad 0 \le t \le t_0.
$$

$$
||u^2(t)||_2 \le ||u^2(t_0)||_2 ||\le k(C_0) \qquad t < t < \bar{t}_i.
$$

Thus $||u_2||_2 = ||u||_4^2$ is uniformly bounded in [0, T_2].

Now consider the space L_2 , space of all vectors having components in L_2 and consider the projection P onto the solenoidal vectors. As in the proof of Theorem (4.1) in [3], multiply equation (2.1) by $-P\nabla^2 u$. Inequality (4.8) of the latter reads

(2.14)
$$
\frac{d}{dt} \|\nabla u\|_2^2 + \|P\nabla^2 u\|_2^2 \leq \|u \cdot \nabla u\|_2^2.
$$

Now we proceed as follows:

$$
\|u\cdot\nabla u\|_2^2\leq \|u\|_4^2 \|\nabla u\|_4^2\leq \|u\|_4^2 \|\nabla u\|_2^{1/2} \|\nabla u\|_6^{3/2}.
$$

Lemmas 3.3 and 3.5 of $\lceil 3 \rceil$ read:

$$
\|\nabla u\|_{6} \leq C \|P\nabla^{2} u\|_{2}
$$

$$
\|\nabla u\|_{2} \leq \|u\|_{2}^{1/2} \|\nabla P^{2} u\|_{2}^{1/2}
$$

Substituting the last two inequalities we get

$$
\|u\cdot\nabla u\|_2^2\leqq C\,\|P\nabla^2 u\|_2^{7/4}\|u\|_4^2\|u\|_2^{1/4}\leqq C\,\|P\nabla^2 u\|_2^{7/4}
$$

Thus

(2.15)
$$
\frac{dt}{d} \|\nabla u\|_2^2 + \|P \nabla^2 u\|_2^2 \leq C \|P \nabla^2 u\|_2^{7/4}.
$$

Let us repeat the argument that was used in the first step. Let F be the closed set for which

$$
\frac{d}{dt} \|\nabla u\|_2^2 \leq 0 \qquad t \in F.
$$

For $t \in F$ P $\nabla^2 u$ is uniformly bounded, therefore by Lemma 3.4 of [3] it follows that

$$
(2.16) \t\t\t \t\t\t \t\t \t\t \mathbb{U} \t\t\t \mathbb{U} \t\t \
$$

The complementary set consists of possibly the half open interval $[0, t_0]$ for which

(2.17)
$$
\|\nabla u(t)\|_2 \le \|\nabla u^0\|_2 \qquad 0 \le t < \hat{t}_0,
$$

and intervals (t_i, \hat{t}_i) for which

(218) *Ilvu(,)ll2<-llvu(,,)ll2<-c* **,;<,<f,**

since $t_i \in F$.

Estimates (2.16)-(2.18) are summarized in (2.7). Thus it is possible to extend the domain smoothness across T_2 and the proof is complete.

REFERENCES

1. J.A. Serrin, *On the interior regularity of weak solutions of the Navier-Stokes equations,* Archs. Nation. Mech. Analysis, 9 (1962), 187-195.

2. S. Kaniel and M. Shinbrot, *Smoothness of weak solutions of the Navier-Stokes equations,* Archs. Nation. Mech. Analysis, 24 (1967), 302-324.

3. M. Shinbrot and S. Kaniel, *The initial value problem for the Navier-Stokes equations,* Archs. Nation. Mech. Analyses, 21 (1966), 270-285.

4. (3. Prodi, *Theoremi di tipo locale per il sistema di Navier-Stokes e stabilita delle soluzioni stazionairie,* Re. Semin. Mat. Univ. Padova, 32 (1962), 374--397.

5. Hopf, Eberhardt, *Ober die Anfangwertaufgaben flit die hydroamischen Grundgleiehungen,* Math. Nach., 4 (1951), 213-321.

THE HEBREW UNIVERSITY OF JERUSALEM